N44

Galvanic

- Converts chemical energy into electrical energy.
- Positive cell potential, E°cell = +
- Spontaneous, negative free energy difference, ΔG = -
- Anode = and Cathode = +
- · Electrons supplied by the chemical being oxidized.
- · Electrons flow from anode to cathode.

Electrolytic

- · Converts electrical energy into chemical energy
- Negative cell potential, E°_{cell} = -
- NOT spontaneous, positive free energy difference, ΔG = +
- Anode = + and Cathode = -
- · Electrons supplied by an external source
- Electrons enter from the cathode and come out at the anode.

The anode loses mass as cell runs. $Zn_{(s)} \rightarrow Zn^{2+}{}_{(aq)} + 2e^{-}$ $Zn_{(s)} \rightarrow Zn^{2+}{}_{(aq)} + 2e^{-} \rightarrow Cu_{(s)}$ $Zn_{(s)} \rightarrow Zn^{2+}{}_{(aq)} + 2e^{-} \rightarrow Cu_{(s)}$ $Zn_{(s)} \rightarrow Zn^{2+}{}_{(aq)} + 2e^{-} \rightarrow Cu_{(s)}$ $Zn_{(s)} \rightarrow Zn^{2+}{}_{(aq)} \rightarrow Zn^{2+}{}_{(aq$

Line Notation

 $Zn(s) | Zn^{2+}(aq) | | Cu^{2+}(aq) | Cu(s)$

Anode Anode Cathode solution

N44

Galvanic

- · Converts chemical energy into electrical energy.
- Positive cell potential, E°_{cell} = +
- Spontaneous, negative free energy difference, ΔG = -
- Anode = and Cathode = +
- · Electrons supplied by the chemical being oxidized.
- Electrons flow from anode to cathode.

Electrolytic

- Converts electrical energy into chemical energy
- Negative cell potential, E°_{cell} = -
- NOT spontaneous, positive free energy difference, $\Delta G = +$
- Anode = + and Cathode = -
- · Electrons supplied by an external source
- Electrons enter from the cathode and come out at the anode.

Cathode

material

Line Notation

 $Zn(s) | Zn^{2+}(aq) | | Cu^{2+}(aq) | Cu(s)$

Anode Anode Cathode Cathode Material Solution Cathode Solution